Synthesis of Nanomaterials Course code: 601102

आर्यभट्ट ज्ञान विश्वविद्यालय ARYABHATTA KNOWLEDGE UNIVERSITY

Centre for Nanoscience and Technology Aryabhatta Knowledge University, Patna Mithapur, Patna Bihar

Content developed by: Dr. Vijay Kumar Ravi

Biosynthesis of silver nanoparticles using *Plumbago auriculata*

- Ag nanoparticles are shown antimicrobial activities.
- Leaf and calyx extracts of *Plumbago auriculata use* for the biosynthesis of silver nanoparticles (AgNPs).
- The formation of AgNPs was confirmed by the colour change in the plant extracts.
- Characterized by UV-Vis spectrophotometric.
- The present water-soluble components of the extracts were responsible for the reduction of Ag+ ions.

Continued-----

Biosynthesis of silver nanoparticles using *Plumbago auriculata*

- AgNPs were evaluated against both gram-negative and gram-positive bacteria.
- The results produce showed good antibacterial activity against *Klebsiella pneumoniae*.
- It contributes to the environmentally friendly and cost-effective technique of the biosynthesis of nanoparticles against the drug development.

Adv. Nat. Sci.: Nanosci. Nanotechnol. 9 (2018) 035004 (9pp)

Materials and method

- Aqueous extracts of leaves and calyces were prepared using fresh samples (25 g).
- Then crushed in distilled water (100ml) using a mortar and pestle.
- Samples were filtered through Whatman no.1 filter paper and stored at 40 °C for 14 days.
- 1mM silver nitrate solution was prepared as follows: one molar silver nitrate stock solution was prepared by dissolving AgNO3 (0.17g) in distilled water (100ml).
- A 1 mM solution was prepared by diluting 1 M solution (10ml) in distilled water (90ml).
- This solution was stored in a dark bottle for further use at room temperature.
- The concentrations of the extracts and AgNO3 were 17 000 μg × ml^-1 and 10 000 μg × ml^-1 , respectively.

Synthesis procedure of AgNPs

- Aqueous and methanolic extracts of leaf and calyx (5ml each) were added separately to 1mM AgNO3 solution (45ml) for reduction of Ag+ ions.
- Synthesis of AgNPs occurred at both room temperature (24 °C) and at 60 °C by heating extracts in a water bath.
- The change in colour of the solution indicates the formation of the AgNPs.

Biosynthesis of AgNPs at two different temperatures of the different extracts

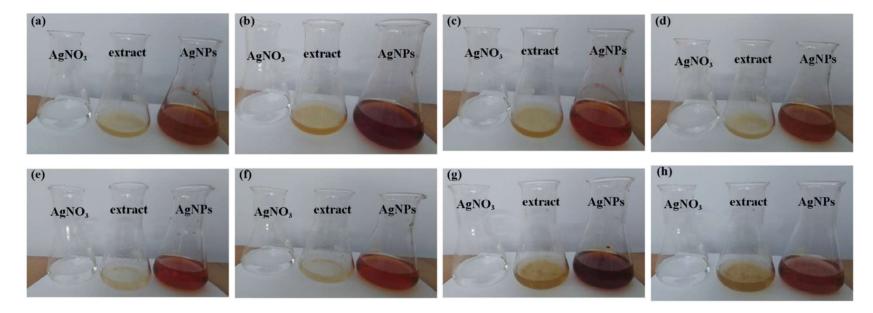
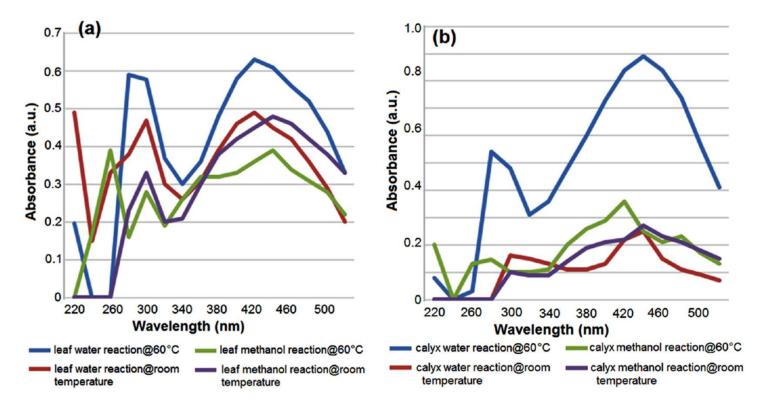



Figure 1. Colour changes are seen in the biosynthesis of AgNPs at two different temperatures of the different extracts: (a) yellowish brown of leaf methanolic extract $(24 \circ C)$ (b) dark brown of leaf methanolic extract $(60 \circ C)$ (c) yellowish brown of leaf water extract $(24 \circ C)$ (e) yellowish brown of calyx methanolic extract $(24 \circ C)$ (f) yellowish brown calyx water extract $(60 \circ C)$ (g) dark brown of calyx methanolic extract $(60 \circ C)$ (f) yellowish brown calyx water extract $(60 \circ C)$ (g) dark brown of calyx methanolic extract $(60 \circ C)$ and (h) yellowish brown of calyx water extract $(24 \circ C)$.

Characterization of *P. auriculata* AgNPs

- UV-Vis spectrophotometer used for analysis the formation of NPs.
- The reduction of pure Ag+ ions was monitored by using a UV-Vis spectrophotometer.
- Distilled water was used as blank. The reaction medium was analyzed for its maximum absorption at scan wavelength range of 220–600 nm and the corresponding peaks were recorded.
- The absorbance of the reaction medium was measured within 24 h.

Characterization of *P. auriculata* AgNPs

Biosynthesis of gold nanoparticles using *Pseudomonas aeruginosa*

- *Pseudomonas aeruginosa* were used for extra-cellular biosynthesis of gold nanoparticles (Au NPs).
- Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of *P. aeruginosa* ATCC 90271, *P. aeruginosa* (2) and *P. aeruginosa*.
- Transmission electron microscopy (TEM) micrograph showed the formation of welldispersed gold nanoparticles in the range of 15–30 nm.
- The process of reduction is extra-cellular.

Materials and methods

- Bacterial strain and growth conditions : Two clinical samples of bacterial isolates used in this study are isolated from burns.
- The isolates were microbiologically and biochemically characterized as *Pseudomonas* aeruginosa.
- Bacteria were routinely cultured in nutrient broth and on nutrient agar plates.
- Use *P. aeruginosa* (1) that produce soluble fluorescent pigment pyoverdin and the other *P.aeruginosa* (2) that produce the blue pigment pyocyanin when cultured on cetrimed agar media. *P. aeruginosa* ATCC 90271 was used as standard strain.

Biosynthesis of gold nanoparticles

- The two isolates and control strains of *P. aeruginosa* were used. The bacteria was grown aerobically in 50 ml nutrient broth media.
- Incubated at 37 °C and agitated at 150 rpm for 24 h.
- After the incubation, the supernatants were obtained by centrifugation of overnight bacterial culture at 5000 rpm for 5 min.
- For synthesis of gold nanoparticles (Au NPs): The hydrogen tetrachloroaurate was mixed with 50 ml of cell free supernatant to obtain a final concentration of gold ions to be 1 mM.
- The solution was incubated at 37 °C for 24 h.
- Control (without the gold ions only supernatant) was also run along with the experimental flask.
- After 24 h of incubation the cell free supernatant containing nanoparticles can be collected.

Au NPs of *P. aeruginosa* ATCC90271, *P. aeruginosa* (2), and *P. aeruginosa* (1)

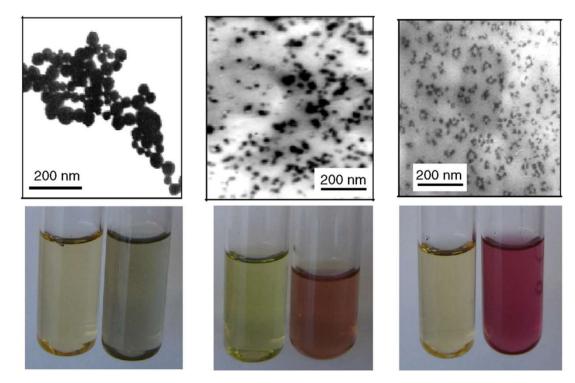
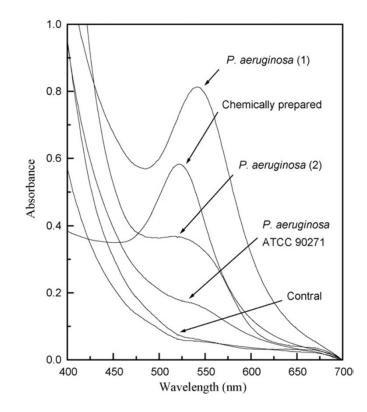



Fig. 1. The transmission electron microscopy and Suspension of Au NPs prepared by supernatant of *P. aeruginosa* ATCC 90271, *P. aeruginosa* (2), and *P. aeruginosa* (1) (from left to right) respectively.

The absorption spectra of Au NPs

The absorption spectra of Au NPs prepared by supernatant of *P. aeruginosa* ATCC 90271, *P. aeruginosa* (2), and *P. aeruginosa* (1).

References

- R. K. Das, V. L. Pachapur, L. Lonappan, M.itra Naghdi, R. Pulicharla, S. Maiti, M. Cledon, L. Martinez-Araceli Dalila, S. J. Sarma, S. K. Brar Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol. Environ. Eng. (2017) 2,2-21.
- P. Singh, Yu-Jin Kim, D. Zhang, Deok-Chun Yang Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends in Biotechnology, (2016), *34*, 588-599.
- K. Singh, Y. Naidoo, C. Mocktar2 and H. Baijnath Biosynthesis of silver nanoparticles using *Plumbago auriculata* leaf and calyx extracts and evaluation of their antimicrobial activities. Adv. Nat. Sci.: Nanosci. Nanotechnol. (2018), *9, 1-*9.
- M. I. Husseiny, M. Abd El-Aziz, Y. Badr, M. A. Mahmoud Biosynthesis of gold nanoparticles using *Pseudomonas aeruginosa.* Spectrochimica Acta Part A (2007), *67*, 1003–1006.

Thank You